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Abstract. In recent years, due to the advance of modern sensory
devices, the collection of multiple biomedical data modalities such as
imaging genetics has gotten feasible, and multimodal data analysis has
attracted significant attention in bioinformatics. Although existing mul-
timodal learning methods have shown superior ability in combining data
from multiple sources, they are not directly applicable for many real-
world biological and biomedical studies that suffer from missing data
modalities due to the high expenses of collecting all modalities. Thus, in
practice, usually, only a main modality containing a major ‘diagnostic
signal’ is used for decision making as auxiliary modalities are not avail-
able. In addition, during the examination of a subject regarding a chronic
disease (with longitudinal progression) in a visit, typically, two diagnosis-
related questions are of main interest that are what their status currently
is (diagnosis) and how it will change before their next visit (longitudinal
outcome) if they maintain their disease trajectory and lifestyle. Accurate
answers to these questions can distinguish vulnerable subjects and enable
clinicians to start early treatments for them. In this paper, we propose
a new adversarial mutual learning framework for longitudinal prediction
of disease progression such that we properly leverage several modalities
of data available in training set to develop a more accurate model using
single-modal for prediction. Specifically, in our framework, a single-modal
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model (that utilizes the main modality) learns from a pretrained multi-
modal model (which takes both main and auxiliary modalities as input)
in a mutual learning manner to 1) infer outcome-related representations
of the auxiliary modalities based on its own representations for the main
modality during adversarial training and 2) effectively combine them to
predict the longitudinal outcome. We apply our new method to ana-
lyze the retinal imaging genetics for the early diagnosis of Age-related
Macular Degeneration (AMD) disease in which we formulate prediction
of longitudinal AMD progression outcome of subjects as a classification
problem of simultaneously grading their current AMD severity as well
as predicting their condition in their next visit with a preselected time
duration between visits. Our experiments on the Age-Related Eye Dis-
ease Study (AREDS) dataset demonstrate the superiority of our model
compared to baselines for simultaneously grading and predicting future
AMD severity of subjects.

1 Introduction

Recent advances in multimodal biomedical imaging and high throughput geno-
typing and sequencing techniques allow us to study integrative imaging genetics
and provide exciting new opportunities to ultimately improve our understanding
of different disease mechanisms. Although many multimodal learning methods
have been developed and shown superior ability in integrative analysis of imaging
genetics data, the following two challenging problems are still desired to address
for practical applications:

Input Data with Missing Modalities: An ideal case is that the researchers
or clinicians have access to all of the informative data modalities for decision
making, i.e., be able to perform multimodal data based diagnosis. However,
due to the high cost of collecting all data modalities, typically, only a single
main modality that provides the majority of ‘signal’ about a subject’s status is
examined in practice. For instance, it has been established that genetic factors
play an essential role in the progression of Age-related Macular Degeneration
(AMD) pathogenesis [20,21,71,77]. Thanks to advances in sequencing technolo-
gies [1,48,49], the determination of whole-genome sequence is feasible nowadays
and can provide valuable information for AMD diagnosis, but AMD severity
score [19] is usually only determined by exploring characteristics of subjects’
Color Fundus Photographs (CFP) - that is the most accessible retinal image
modality globally - in practice due to lack of expensive facilities required for
sequencing, especially in low-resourced areas.

Diagnosis and Prediction of Longitudinal Outcome: Many diseases have
several stages in terms of severity, and a subject may progress to advanced ones
through time. Predicting the disease progression can help understand the dis-
ease’s dynamics and thus, advise physicians on medication intake. Two questions
of main interest when studying a subject’s condition in clinical practice are that
given their examination records, “how is current severity status of them?” (diag-
nosis), and “how will their disease severity change until their next visit?” (i.e.,
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longitudinal outcome prediction) Accurate answers to these questions can com-
prehensively predict a subject’s current status as well as their future disease
trajectory and enable clinicians to start early treatment for highly vulnerable
ones to decelerate their disease progression. However, it is often prohibited to
collect the time series biomedical data (from multiple years visits) to predict the
disease progression in practical applications, especially for low-resourced areas.
The researchers and clinicians often want to make the diagnosis and longitudi-
nal outcome prediction only using the data at the current visit, which makes the
disease progression prediction more challenging.

We aim to solve both challenging tasks in the second aspect while considering
the constraints mentioned in the first one. To do so, firstly, our intuition is that
single-modal input based models that benefit from the main and auxiliary data
modalities collected in multi-modal datasets during training and rely on the main
modality in their inference phase better mimic clinical practice. Therefore, we
train such a model in our framework. Secondly, we can overcome the longitudinal
prediction challenge by leveraging records collected at the current visit to make
predictions for the current and next visits if the time gap between them is not
too large compared to the typical pace of the disease progression.

Multimodal learning (MML) [22,23,44,69,79] and Deep Mutual Learning
(DML) [31,81] methods have shown significant results recently. On the one hand,
MML methods can effectively utilize the supervision from several modalities to
improve the classification performance in tasks such as visual question answer-
ing and video categorization. However, they require that all input modalities be
available for their inference, which limits their practicality for biomedical appli-
cations that usually suffer from missing modalities. On the other hand, DML
methods have demonstrated that two models that are trained together and get
feedback from their peers have better generalization performance compared to
their baseline models that are trained separately. Thus, our intuition is to over-
come the missing modality problem of multimodal learning methods for our
task by developing a single-modal model while leveraging the benefits of mutual
learning by training the model mutually with a multimodal one.

In this paper, we introduce a novel framework based on deep mutual learning
[31,81] in which a single-modal model – our model only need the main diagnostic
modality (e.g. CFP) of a target disease (e.g. AMD) to conduct the predictions –
and a pretrained multimodal model that takes the main and auxiliary (genetics
and age) data modalities as input evolve together during training. Both models
learn to solve our formulated classification problem to simultaneously 1) grade
the current disease status of a subject (Advanced or not) and 2) predict their
future condition in their next visit (Advanced or not, with a predefined time-gap
between visits, e.g. 3 years). Further, we hypothesize that genetics and demo-
graphics (age) information can provide ‘complementary knowledge’ for a model
for longitudinal outcome prediction, especially in the subjects with similar fun-
dus images that may have different future trajectories due to their genetic dif-
ferences. Therefore, we design our framework such that the single-modal model
learns to infer outcome-related representations of auxiliary modalities using its
representations for the main modality from its multimodal colleague using a
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Riemannian adversarial training scheme. After that, it combines them to make
the predictions. In addition, we use entropy regularization during the pretrain-
ing stage of the multimodal model to prevent it from neglecting noisy auxiliary
modalities and focusing only on the main one. Our contributions can be sum-
marized as follows:

– We introduce a new framework to simultaneously diagnose current status
and predict the longitudinal outcome of subjects for disease progression by
developing a model that only requires the main diagnostic modality – col-
lected at current visit – for its predictions while properly leveraging auxiliary
modalities available in the training set to enhance final model’s performance.

– We propose to model the complex relationship of representations of the main
modality and auxiliary ones by Riemannian Generative Adversarial Networks.

– We design a functional entropy regularized pretraining scheme for the mul-
timodal model to prevent it from shortcut learning to discard the auxiliary
modality and only use the more informative main modality.

2 Related Work

Multi-Modal Learning (MML): MML combines knowledge from several
modalities to enhance predictions for a target task. It has achieved significant
results in domains such as video understanding and visual question answer-
ing that leverage several types of visual, audial, or textual data [2,17,22–
24,28,35,39,44,50,56,67,70,79]. However, these works assume that all modalities
are present during training and inference which limits their direct application in
medical problems that missing modalities are a common challenge in them. A
popular workaround is to reconstruct and impute missing modalities using avail-
able ones [14,47,57,61,64,66,76]. However, reconstruction of extremely high-
dimensional modalities such as genetics (∼1.6 ×105 dimensional in our problem)
is not practical in healthcare problems with limited training data. Further, pre-
dicting some modalities from others may not always be feasible. For instance,
prediction of one of RGB and thermal images [76] from the other is sensible,
but reconstruction of whole-genome sequence from fundus images of eyes is not.
Another group of methods proposes variational approaches to deal with miss-
ing modalities and model the joint posterior of representations of modalities as a
product-of-experts [74]. Lee and Van der Schaar [42] use this method to integrate
multi-omics data and train modality-specific predictors to ensure representations
of individual modalities are learned faithfully. Nevertheless, a modality-specific
predictor is not reasonable in the longitudinal prediction of disease outcome for
modalities such as genetics that are static while the disease status of a subject
may change in time. This is the case for the method of Wang et al. [69] as well
that trains modality-specific classifiers with incomplete data pairs and train a
final multi-modal model using limited complete pairs while distilling [27,34,45]
the knowledge of pretrained models in it.

Deep Mutual Learning (DML): In a nutshell, two or several models are
trained simultaneously in DML such that each model gets supervision from
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training labels and predictions/representations of other models. Zhang et al. [81]
introduced DML and showed it has better image classification performance com-
pared to knowledge distillation [27,34,45] methods. Since then, different types
of DML for various applications such as image classification [31,41,59,73], semi-
supervised learning [75], self-supervised learning [8,68], and object detection [54]
have been proposed. These models are not suitable for our problem as they train
two models with the same input modality. Recently, Zhang et al. [80] proposed
a multimodal image segmentation model to train two single-modal models in a
DML manner. However, their multimodal DML idea is designed for problems
that their modalities are two ‘views’ of the same phenomenon, not ‘complemen-
tary’ modalities such as CFP and genetics for AMD that CFP contains the
majority of the diagnostic signal while noisy genetics input only complements
the knowledge from CFP.

Age-Related Macular Degeneration (AMD): In this paper, we analyze the
retinal imaging genetics data which were collected to study the AMD disease and
are a good testing platform to evaluate our new method. AMD is a chronic dis-
ease [46] that causes the progressive decline of vision due to the dysfunction of
the central retina in older adults and is the major root of blindness in elder
Caucasians [9,16,65]. Based on a scale called AMD severity score, three stages
are defined for AMD: early, intermediate, and late (advanced) [19]. The severity
score is determined by exploring characteristics of the Color Fundus Photographs
(CFP) of subjects. The main symptom of the early and intermediate stages is
the presence of yellowish deposits called ’drusen’ in the retina, and most patients
are asymptomatic in them [5,29]. The irreversible stage that is accompanied by
severe vision loss is late AMD that appears in two forms: ‘Dry’ and ‘Wet’. In
Dry AMD (Geographic Atrophy), accumulation of drusen in the retina decreases
its sensitivity to light stimuli and causes gradual loss of central vision. In Wet
AMD (Choroidal Neovascularization), the growth of leaky blood vessels under
the retina damages photoreceptor cells and affects visual acuity. GWAS studies
have shown that genetic and environmental factors are critical elements associ-
ated with AMD [20,21,71] and its progression time [77]. In recent years, multiple
deep learning based predictive models are proposed for AMD. They have two
categories: 1) diagnostic models that predict AMD severity of a subject based on
their CFP taken at their current visit [11–13,29,38,52]. Although these models
have shown convincing performance for the diagnosis task, they cannot predict
subjects’ longitudinal outcome that is crucial information for clinicians to start
preventive treatments for vulnerable subjects. 2) Models predicting whether a
subject progresses into late AMD in less than ‘n’ years [10,53,78], where ‘n’ is
a predefined value. Nonetheless, if their answer is yes, they do not provide any
information about whether the subject is already in advanced AMD or they will
progress to it in the future. Furthermore, the majority of previous works are
single-modal based on CFPs that waste genetic modality in training datasets
or they are multi-modal [53,78] taking CFPs and 52 AMD-associated variants
[77] which limits their practicality because they need genetic modality in their
inference phase.
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3 Proposed Method

We develop an adversarial mutual framework capable of utilizing auxiliary
modalities (genetics and age) available in training set to improve the training
of a single-modal model (using only main modality (CFP)) that simultaneously
addresses main queries regarding a subject’s status when a chronic disease is
concerned that are: 1) the current status of a subject (e.g., current AMD sever-
ity) and 2) how their status will change until their next visit (e.g., how their
AMD severity score will change in the near future, i.e., longitudinal outcome)
if they maintain their current lifestyle and disease progression trajectory. This
knowledge empowers practitioners to start early treatment to decelerate the dis-
ease progression for susceptible subjects. We explain the intuitions behind our
model step by step in the following subsections using AMD terminologies, but
as we noted, it is applicable for similar diseases as well. Our procedure can be
seen in Fig. 1.

Fig. 1. Overview of our framework. Left: pretraining of our multimodal M-model.
Color Fundus Photographs (CFP) and genetics information of subjects and are used
to train the model. CFP contains the majority of the ’diagnostic signal’ related to
AMD. Thus, to prevent the model to get biased toward CFP and discard the genetic
modality, we impose entropy regularization using a Gaussian measure on the model
during training. (Sect. 3.3) Right: mutual learning of our single-modal S-model (top)
with the pretrained M-model (bottom). S-model learns from the M-model to infer joint
AMD-related representations of the genetics and demographics modalities - using its
representations for an input CFP - using a Riemannian GAN model. The backbone
of the S-model gets initialized by the weights of the CFP-Net of the M-model, and
the M-model evolves during training by updating its CFP-Net using the exponential
moving average of the weights of the S-model’s backbone. (Sect. 3.3)
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3.1 Problem Formulation

We formulate our prediction task as a classification problem. Considering AMD
severity condition of a subject in their current and next visits (with a pre-defined
time gap Tgap between them e.g., Tgap = 3 years), we define three classes: 1)
y = 0 if a subject is not in the advanced AMD condition and will not progress
to it until their next visit. 2) y = 1 if they are not currently in the advanced
stage but will progress to advanced AMD until their next visit. 3) y = 2 if they
have already progressed to the advanced phase. As there is no treatment for late
AMD yet, [65] the fourth case for (current, next) ∼ (advanced, not advanced) is
not possible. Our goal is to develop a model that accurately classifies subjects
into one of the mentioned classes based on their current visit’s CFP images. This
formulation enables us to overcome the challenge of heterogeneity of time gaps
between consecutive visits for subjects in longitudinal datasets. For instance, we
can use records of a subject at visit numbers {1, 3, 7, 9} to train a model with
Tgap = 2 with pairs {(1, 3), (7, 9)}, but a sequence model should handle uneven
time gaps (2, 4, 2) between successive visits.

3.2 Notation

Let us assume that we have a longitudinal dataset such as AREDS [60] in which
each subject has a random number of records corresponding to the visit time
points that their data is collected during the study. We denote the training
dataset as D = {(xig , {(xif ,tj , yi,tj )})|i ∈ [N ], tj ∈ Ti, Ti ⊆ T} where N is the
number of subjects, T is the set of all possible visit indices during the study,
Ti is the set of available visit indices for the i-th subject, xif ,tj is the fundus
image of the subject taken during the visit with index tj , and xig is the genetic
modality of the subject, which is static. For example, in the AREDS dataset
[60], examinations are performed every six months, and the maximum follow-up
study length for a subject is 13 years (26 visits). Thus, T = {1, 2, · · · , 26} is the
set of all possible visit numbers. In addition, we denote our single-modal model
as S-model and multimodal on as M-model in the rest of the paper.

3.3 Longitudinal Predictive Model

We introduce an adversarial mutual learning framework in which the single-
modal S-model learns from a pretrained multi-modal M-model model to 1) infer
outcome-related joint representation of genetics and demographics (age) from
its representations for input CFPs using a Riemannian GAN model - inspired
by studies [20,21,71,77] that have established high association between these
modalities and AMD severity outcome that make it reasonable to incorporate
such prior in our model - and 2) combining the predicted representation and
the one for the visual modality to solve longitudinal outcome classification task
in the course of a mutual training scheme [31,81] that benefits both models. In
summary, our algorithm consists of pretraining the multimodal M-model and
Mutual training the S-model along with the M-model. We describe details of
each one in the following.
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M-model Pretraining: We use a multimodal M-model to guide the training
process of the S-model in a mutual learning fashion. The architecture of the M-
model is shown in Fig.1. It consists of two sub-networks: 1) CFP-net: ResNet
[33] backbone for CFP modality and 2) GD-net: a feed-forward model that
combines genetics as well as demographics (age) modalities to obtain a joint
outcome-related representation for them. Finally, obtained representations are
combined in an early fusion [7] scheme and passed to a classifier to perform
prediction.

As the number of samples in the case group (advanced AMD condition) is far
less than the control group in our problem, our classification problem is imbal-
anced. We use Focal loss [43] to train the M-model because it down-weights the
contribution of ’simple’ examples from majority classes (e.g., control cases with-
out any symptoms that the model can easily classify) in the loss function that
the model is already confident about them. Formally, given yi is the correct class
corresponding to a sample x and pi = Pmodel(y = yi|x = x) be the predicted
conditional probability of our teacher model for class yi given x, Focal loss for
the training sample (x, y) is calculated as

Lfocal(x, y) = −(1 − pi)γ log(pi) (1)

where γ is a hyperparameter controlling the down-weighting factor. As can be
seen, Focal loss is a scaled version of Cross-Entropy loss that has a lower value
for confident predictions of the model.

As we mentioned, the CFP of subjects contains the majority of the ‘diag-
nostic singal’ regarding their AMD status, and the genetics modality provides
complementary knowledge with a much lower signal-to-noise ratio compared to
the CFP modality. Therefore, directly training the model with Focal loss and
standard regularization schemes for deep learning training such as �2-norm of
weights that prefers networks with simpler structures may bias the model to dis-
card the genetic modality and only focus on the CFP one. This phenomenon has
been observed in the literature for domains such as visual question answering
[2,17,28]. To overcome this problem, we use functional entropy regularization
that balances the contribution of modalities. The intuition is that if our model’s
predictions show high entropy when we perturb a modality, then it is not bypass-
ing the modality. Formally, given a probability measure μ over the space of input
x of a non-negative function g(x), functional entropy of g is defined as [6]:

Ent(g) =
∫

g(x) log(g(x))dμ(x) −
∫

g(x)dμ(x) log(
∫

g(x)dμ(x)) (2)

However, the calculation of the RHS of this equation is intractable. As a
workaround, Logarithmic Sobolev Inequality [6,24] is calculated as an upper
bound of the functional entropy for Gaussian measures μ:

Ent(g) ≤ 1
2

∫ ||∇g(x)||2
g(x)

dμ(x) (3)

In our problem, we define g as a measure of a discrepancy between the softmax
output distribution of the M-model when the original genetics modality and its
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Gaussian perturbed version of it are inputted to the model while keeping the
input CFP fixed. In other words, given an input sample x = (xf , xg):

Pmodel(y|x = (xf , xg)) = (p1, · · · , pK)
Pmodel(y|x = (xf , xg + ε)) = (p′

1, · · · , p′
K), ε ∼ N (0, Σxg

),

g(x, ε) � 1
K

K∑
j=1

BCE(pj , p
′
j)

(4)

The function g defined in Eq. (4) can represent the sensitivity of the model’s
predictions to Gaussian perturbations of the genetic modality. Now, we plug g
into Eq. (3) and define a loss function Lent which encourages the model to have
high functional entropy w.r.t its genetics input:

Lent = −1
2

∫ ||∇g(x, ε)||2
g(x, ε)

dμ(ε) . (5)

In practice, we estimate the integral using Monte Carlo sampling, i.e., we approx-
imate it with one σ for each sample. In addition, we set Σxg

as a diagonal covari-
ance matrix with diagonal elements being the empirical variance of samples in
the batch in each iteration.

Mutual Learning of S-model and M-model: After pretraining the M-
model, we develop a training scheme based on mutual learning to train the
S-model. As shown in Fig. 1, S-model has a backbone identical to CFP-net in
M-model and a ‘predictor’ module. We aim to embed two prior medical knowl-
edge into the inductive bias of our model that are: 1) high association between
AMD severity and genetic variants [20,21,71,77]. 2) the ability of fundus images
to predict the age of subjects [72]. To do so, we use the predictor module inside
the S-model to predict representations of GD-net of the M-model. This predic-
tion will be in a much lower dimensional space than reconstructing/imputing
the whole genetic and age modalities together [14,47,57,61,64,76], and thus, is
more sample efficient. The distribution of joint representation of genetics and
age given the representation of CFP images may be multimodal, i.e., the map-
ping between them not necessarily be bijective. Thus, we train the predictor
sub-network of the S-model using Generative Adversarial Networks (GAN) that
are capable of modeling complex high dimensional distributions [3,26,30].

Modeling Interactions Between Representation of a CFP and Cor-
responding Joint Representation of Genetics and Age: We formulate
learning such complex interaction with Riemannian GAN [51,58] training. In
summary, GAN [3,26,30,51,58] models are trained using a two-player game in
which a generator model G aims to learn the underlying distribution of a set of
samples in the training set to trick a discriminator model D that distinguishes
whether its input is real or a fake one generated by G. As the training pro-
cess advances, the generator learns the distribution of training samples, and the
discriminator will not be able to differentiate between real and fake samples
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generated by G. Conventional GAN models’ discriminators [26] measure the dis-
tance between real and fake samples using Euclidean distance between their low
dimensional embeddings. However, it is shown that [4,18] such distance may not
faithfully reflect distances of data points as it is well-known that high dimen-
sional real-world data is not randomly distributed in the ambient space and
are often restricted to a nonlinear low-dimensional manifold [63] with unknown
intrinsic dimension. Therefore, Riemannian GAN models’ discriminators, project
low dimensional representations of samples on a Riemannian manifold such as
hypersphere [51,58] and calculate distances between them with the length of
geodesics connecting them on the manifold. Distances on hypersphere are lim-
ited which makes the training stable, and it is shown that [51] training GAN
with geodesic distances on hypersphere is equivalent to minimizing high order
Wasserstein distances between real and fake distributions and generalizes meth-
ods that minimize the 1-Wasserstein distance [3,30].

Formally, we define a unit hypersphere with a center c and the main axis
direction u (c, u ∈ R

d) that are learnable. Given a joint representation on genetics
and age (can be real predicted by GD-net of M-model or fake one by predictor
of S-model) input h ∈ R

D (D > d) to the discriminator, it projects h into a
d-dimensional space using nonlinear layers to obtain an embedding g. Then, it
projects g on the unit sphere with center c such that gproj = g−c

||g−c|| . Now, let’s
consider circular cross-sections of the hypersphere that the main axis u of the
hypersphere is the normal vector of the surface that they lie in. The idea is that
if the discriminator gets designed to distinguish between real and fake samples
based on the closeness of the cross-section that they lie on to the greatest circle
of the hypersphere - i.e., the larger the radius of the cross-section that a sample
lies on, more realness score is assigned to it - then the generator will attempt
to generate samples that are on the largest circle of the hypersphere. Therefore,
it will be able to generate more diverse samples, which prevents mode collapse.
Given a batch of samples H = {hi}B

i=1, we calculate gj
proj for each sample hj and

decompose it as gj
proj = gj

proj,u + gj
proj,u⊥ . The output score of the discriminator

for a sample hj is calculated as:

D(hj) = −||gj
proj,u||

σproj,u
+

||gj
proj,u⊥ ||

σproj,u⊥
(6)

where σproj,u and σproj,u⊥ are empirical variances of ||gj
proj,u|| and ||gj

proj,u⊥ ||
respectively. We use the relativistic objective [37] to train the GAN model. In
a nutshell, it is designed such that the generator not only attempts to increase
the score of the discriminator for fake samples, but also aims to decrease its
score for real samples. If we denote joint representations of GD-net in M-model
by h ∼ PGD and the ones predicted by the predictor model of S-model with
h′ ∼ Ppred, objectives of G (predictor in S-model) and discriminator D are as
follows:



Multi-modal Genotype and Phenotype Mutual Learning 219

LD = max
D

Eh∼PGD
[log(f(D(h) − Eh′∼Ppred

[D(h′)]))]

+Eh′∼Ppred
[log(f(Eh∼PGD

[D(h)] − D(h′)))] (7)

LG = max
G

Eh′∼Ppred
[log(f(D(h′) − Eh∼PGD

[D(h)]))]

+Eh∼PGD
[log(f(Eh′∼Ppred

[D(h′)] − D(h)))] (8)

where f(z) = sigmoid(λz) calculates the discriminator’s estimated probability
that one/batch of real sample[s] is/are more realistic than a batch/one fake
one[s], and λ is a hyperparameter [37]. We train the parameters for the main
axis u and center c as follows. In each iteration, given a batch of real and fake
samples H = {hi}B

i=1, at first, we update the center parameter with:

Lc =
1

|B|
|B|∑
j=1

H(||gj
proj − c||2) (9)

H is the Huber function [36], and the objective estimates the center of the
hypersphere given a batch of samples. Then, we fix the center parameter, and to
make the training of the center parameter stable, we encourage the discriminator
to map samples to embeddings with similar distances relative to the center, i.e.,

Ldist =
1

|B|
|B|∑
j=1

H(||gj
proj − c||2 − σh) (10)

where σh is the empirical standard deviation of ||gj
proj − c||2 distances from pro-

jected embeddings to the center. Parameters of the main axis u and discriminator
are updated with backpropagated gradients from loss functions in Eqs. (7, 10).

We train the S-model’s classifier to combine its representation for CFP and
the predicted joint one for genetics and demographics modalities to accurately
classify subjects’ status. Firstly, we use Focal loss [43] defined in Eq. (1) to
leverage training labels. Secondly, we use a distillation loss [34] to guide the
S-model using predictions of the M-model:

Ldistill = KL(PS(y|x;T ),PM (y|x;T )) (11)

where the parameter T is a temperature parameter that controls the sharpness
of output softmax distributions of models. In summary, the training objective
for S-model’s training is:

LS = Lfocal + λ1Ldistill + λ2LG (12)

Before starting training the S-model, we initialize its backbone with the
weights of the pretrained M-model’s CFP-net to make the convergence faster.
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As adversarial training may cause instability and degradation of the backbone’s
representations [15,25,62], we do not backpropagate gradients from adversarial
training for the backbone’s weights. Instead, we train them using supervision
from Focal loss and distillation loss. Finally, as shown that mutual learning ben-
efits from both models getting feedback from their peers, we update M-model’s
CFP-net’s weights with exponential moving average (EMA) of the backbone of
the S-model, i.e., after each iteration, we update CFP-net’s weights as:

θCFP ← αθCFP + (1 − α)θBackbone (13)

Doing so prevents corruption of the weights of pre-trained M-model happening
when using well-known distillation loss from S-model to M-model [31,81] in
the starting phase of training as S-model’s predictions are not reliable yet. We
summarize our training algorithm in supplementary materials.

4 Experiments

In this section, we evaluate the effectiveness of our proposed adversarial mutual
learning method on the task of simultaneously grading the current AMD severity
of a subject as well as predicting their longitudinal outcome in their next visit
when the predefined time gap between visits are 2, 3, and 4 years respectively.
We compare our model with baseline methods, provide its interpretations, and
perform an ablation study to analyze the effect of its different components.

4.1 Experimental Setup

Data Description: We use Age-related Eye Disease Study (AREDS) dataset
[60] for our experiments, which is the largest longitudinal dataset available for
AMD collected and maintained by National Eye Institute (NEI). It is available
at the dbGaP1 AREDS contains longitudinal CFPs of 4628 participants, and a
subject may have up to 13-year follow-up visits since the baseline. For prepro-
cessing step, we cropped each CFP to a square that encompasses the Macula
[13,52] and resized it to 224×224 pixels resolution. As mentioned in Sect. 1, the
yellowish color of drusen in the Macula and the red color of leaky blood vessels
are important characteristics of dry and wet AMD respectively. Thus, we use
a nonlinear Bézier augmentation [82] - previously proposed for CT scans and
X-ray data - followed by random vertical and horizontal flip to augment CFPs.
In addition to CFPs, genome sequence of 2780 (∼60%) subjects is available in
AREDS. We use all the genetic variants that are in the 34 loci regions [21] asso-
ciated with advanced AMD with minor allele frequency (MAF) > 0.01 [21], and
156,864 SNPs remain after filtering. We then partition the AREDS dataset on
the subject level and take all subjects that their genetics information is available

1 https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study id=phs000001.
v3.p1.

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000001.v3.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000001.v3.p1
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as our train set. We randomly partition the rest into two halves for our valida-
tion and test sets. We refer to supplementary materials for more details about
our data preparation.

Baselines: We compare our method against previous mutual learning and
knowledge distillation methods in the literature. DML [81] trains two mod-
els from scratch with different initialization such that each model is trained with
a loss function that is the sum of two terms, namely Cross-Entropy loss and
KL-divergence between the distributions predicted by the model and its peer.
KDCL [31] improves DML by using ‘ensemble’ of models’ predictions instead of
prediction of the peer model in the KL-divergence term. We use two ensemble
schemes for KDCL, namely ‘min-logit’ and ‘mean’. KD [34] distills the knowl-
edge in the powerful large pretrained model, called teacher model, into a model,
student, by training the student model using KL-divergence loss between its
predictions and the ones for the teacher model. In addition, to show the effec-
tiveness of leveraging ‘complementary’ knowledge in the genetics modality, we
compare our model with single-modal baselines such that we train a ResNet
architecture with Focal loss and Cross-Entropy loss. We denote these two cases
in our experiments as Base-Focal and Base-CE.

Training and Evaluation: We use multi-class Area Under Curve (AUC)
introduced by Hand and Till [32] as our evaluation metric because it is suit-
able for imbalance classification problems and has been used in AMD litera-
ture [13,52,53,78]. We pretrain our M-model for 10 epochs with batch size 128.
Then, we train S-model mutually with M-model for 10 epochs with batch size 32.
We use the same architectures for two sub-networks of all other mutual learning
and knowledge distillation methods, and we use the architecture of our S-model
for Base-CE/Focal. By doing so, we reduce the effect of architectural design and
can more readily compare the methods. For a fair comparison, we train all base-
line models for 20 epochs with batch size 128. We use Adam optimizer [40] with
learning rate 0.0003, exponential decay rates (β1, β2) = (0.9, 0.99), and weight
decay 0.0001 for all models except for the parameters of the S-model’s predictor
and discriminator that we set (β1, β2) = (0.5, 0.999), and also, initialize their
parameters with normal distribution with zero mean and std of 0.02. We refer
to supplementary materials for more details of experiments.

4.2 Experimental Results

Comparison with Baselines Models. Table 1 summarizes the performance
of baseline methods and our adversarial mutual learning scheme for simultane-
ously grading and longitudinal prediction of AMD status of subjects. We explore
baseline methods in two settings: 1) genetics modality is incorporated in their
training where a multimodal network is trained along with a single-modal one,
and we denote them with (M ↔ S). 2) only CFP is used in their training, and
two single-modal models are trained together that are shown by (S ↔ S). It can
be seen that mutual learning models consistently outperform knowledge distil-
lation and standard single-network training baselines Base-CE/Focal, which is
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consistent with observations for natural image classification tasks. [31,81] Inter-
estingly, Base-Focal has a competitive or even better performance compared to
KD (S ↔ S) and shows better results compared to Base-CE, which shows the
superior ability of the Focal loss [43] to handle long-tailed distributions com-
pared to Cross-Entropy loss. In all cases except KDCL-MinLogit with 2 years
gap, incorporating the genetics modality in the training procedure of the meth-
ods enhances the performance of the final single-modal model in inference, which
supports our hypothesis that the genetics modality can provide supervision that
is beneficial to the model’s training. Furthermore, our model outperforms mutual
learning models in all three cases of 2, 3, and 4 years gap between visits that
demonstrates our model can more effectively ‘denoise’ the highly noisy genetics
modality during training compared to other baselines and properly learn to pre-
dict AMD related joint representation of genetics and demographics modalities
from its own one for an input CFP and combine them to perform longitudinal
prediction.

Table 1. Comparison of our proposed method with baseline methods. Mean and stan-
dard deviation of 5 runs with different initialization are reported.

Time gap 2 years 3 years 4 years

Method Using auxiliary
modality

AUC

KDCL - MinLogit (M ↔ S) [31] � 0.882 ± 0.003 0.881 ± 0.004 0.889 ± 0.003

KDCL - MinLogit (S ↔ S) [31] × 0.883 ± 0.004 0.880 ± 0.003 0.886 ± 0.004

KDCL - Mean (M ↔ S) [31] � 0.876 ± 0.005 0.881 ± 0.003 0.889 ± 0.002

KDCL - Mean (S ↔ S) [31] × 0.869 ± 0.004 0.874 ± 0.003 0.886 ± 0.005

DML (M ↔ S) [81] � 0.879 ± 0.002 0.877 ± 0.004 0.898 ± 0.003

DML (S ↔ S) [81] × 0.872 ± 0.004 0.874 ± 0.004 0.896 ± 0.004

KD (M ↔ S) [34] � 0.872 ± 0.002 0.877 ± 0.003 0.888 ± 0.003

KD (S ↔ S) [34] × 0.867 ± 0.003 0.873 ± 0.001 0.884 ± 0.001

Base-CE × 0.862 ± 0.005 0.867 ± 0.005 0.877 ± 0.005

Base-focal × 0.866 ± 0.003 0.877 ± 0.005 0.881 ± 0.008

AdvML (ours) � 0.896 ± 0.001 0.899 ± 0.001 0.914 ± 0.001

Interpretation of S-model’s Predictions Figure 2 demonstrates Grad-CAM
[55] saliency maps of our S-model. As mentioned in Sect. 1, the main charac-
teristics of AMD in CFPs are the accumulation of yellow deposits called drusen
in the Macula of an eye as well as the growth of leaky blood vessels under the
retina that cause leakage of blood on photoreceptor cells. Saliency maps in Fig.
2 indicate that our S-model looks for these characteristics in the Macula for
decision making, which is aligned with the clinical practice.

Ablation Study: In this section, we perform an ablation study to explore the
effect of each component of our model. We remove entropy regularization in M-
model’s pretraining and the GAN training component in the mutual learning
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both separately and simultaneously. Table 2 summarizes the results. We can
observe that removing entropy regularization for the genetics modality causes
more severe performance degradation for our model, which highlights its impor-
tance to properly ‘debias’ the multimodal model to not neglect the genetics
modality and only rely on the CFPs and effectively denoise it to extract its
discriminative features for classification.

Fig. 2. Grad-CAM [55] saliency maps of our S-model’s decisions. It focuses on the
Macula region of the eyes and AMD symptoms, namely leaky blood vessels in the
retina and yellow deposits in the Macula called drusen, which is aligned with clinical
practice. Left: neither drusen nor leaky vessels are present in the Macula. Middle:
Small areas of accumulation of drusen are observable. Right: leaked blood in the retina
(top) and large areas of drusen (bottom) in the Macula exist.

Table 2. Ablation experiments’ results for different components of our method.

Time gap 2 years 3 years 4 years

Ablation experiment AUC

W/O Ent Reg 0.880 ± 0.000 0.885 ± 0.001 0.887 ± 0.002

W/O GAN 0.881 ± 0.001 0.889 ± 0.002 0.903 ± 0.002

W/O Ent Reg & GAN 0.871 ± 0.002 0.879 ± 0.003 0.882 ± 0.001

5 Conclusion

In this paper, we introduced a new adversarial mutual learning framework that
is capable of leveraging several auxiliary diagnostic modalities (containing com-
plementary diagnostic signals that are collected in the training set and missing
in inference) to train a more accurate single-modal model which uses the main
modality (that provides the majority of diagnostic signal and is available in both
training and inference) for inference. To do so, the single-modal model is trained
with a pretrained multimodal model in a mutual learning manner. We imposed
entropy regularization on the multimodal model during its pretraining to encour-
age it not to neglect the auxiliary modality in its decisions and learn to ‘denoise’
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them to keep their discriminative information. Our single-modal model learns
from the multimodal one to infer joint representation of the auxiliary modalities
from its representation for the main modality and effectively combine them for
its predictions. We modeled the complex interaction between modalities using
a Riemannian GAN model and defined our classification task as simultaneously
diagnosis of the current status of a subject as well as predicting their longitudi-
nal outcome. We applied our method to the problem of early detection of AMD
in which our experiments on the AREDS dataset and our ablation study demon-
strated the superiority of our model compared to baselines and the importance
of each component for our model.
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